If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+21x-6=0
a = 6; b = 21; c = -6;
Δ = b2-4ac
Δ = 212-4·6·(-6)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{65}}{2*6}=\frac{-21-3\sqrt{65}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{65}}{2*6}=\frac{-21+3\sqrt{65}}{12} $
| 2x2−2x+25=4x2−20x+25 | | 4a+6=16 | | 3(w+7)-8w=-19 | | (2x+3)(3x+6)=0 | | y-3.19=9.46 | | 250=500-50r | | 400=500-50r | | y=-93(93)= | | | | 3/4x+3=2/5 | | 8x^2-((+6x^2-4x-21x+14)-214+9-6x-12x=0 | | 16t^2-24t+325=0 | | ((x^2)-10)+((x^2)-98)=180 | | (2x+1)2=4(x2-1)+x-1 | | 6+3n=4-n | | 8(u-1)-4=4(2u-1)+9 | | 4x+2^{1+2x}=50 | | (2x-3)(4x-3)-((2x-7)(3x-2)=214 | | 7/(w+6)=-4 | | 7/w+6=-4 | | 16t^2=26t=5 | | 0.5=x/100 | | √x-6=4 | | x^2+x^2=81 | | 1.06=5x | | 9x2−16=0 | | 9x2−16=0. | | 2-6n=0.5 | | 2x/5+42=x | | 4x=1/2(120+2x) | | 4x=120+2x | | ((7+x)(7+x))+((7-x)(7-x))=130 |